Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist.
نویسندگان
چکیده
To characterize structural changes induced in the nicotinic acetylcholine receptor (AChR) by agonists, we have mapped the sites of photoincorporation of the cholinergic noncompetitive antagonist 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (]125I]TID) in the presence and absence of 50 microM carbamylcholine. [125I]TID binds to the AChR with similar affinity under both these conditions, but agonist inhibits photoincorporation into all subunits by greater than 75% (White, B. H., Howard, S., Cohen, S. G., and Cohen, J. B. (1991) J. Biol. Chem. 266, 21595-21607). [125I]TID-labeled sites on the beta- and delta-subunits were identified by amino-terminal sequencing of both cyanogen bromide (CNBr) and tryptic fragments purified by Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by reversed-phase high-performance liquid chromatography. In the absence of agonist, [125I]TID specifically labels homologous aliphatic residues (beta L-257, delta L-265, beta V-261, and delta V-269) in the M2 region of both subunits. In the presence of agonist, labeling of these residues is reduced approximately 90%, and the distribution of labeled residues is broadened to include a homologous set of serine residues at the amino terminus of M2. In the beta-subunit residues beta S-250, beta S-254, beta L-257, and beta V-261 are all labeled in the presence of carbamylcholine. This pattern of labeling supports an alpha-helical model for M2 with the labeled face forming the ion channel lumen. The observed redistribution of label in the resting and desensitized states provides the first direct evidence for an agonist-dependent rearrangement of the M2 helices. The efficient labeling of the resting state channel in a region capable of structural change also suggests a plausible model for AChR gating in which the aliphatic residues labeled by [125I]TID form a permeability barrier to the passage of ions. We also report increased labeling of the M1 region of the delta-subunit in the presence of agonist.
منابع مشابه
Probing the structure of the nicotinic acetylcholine receptor ion channel with the uncharged photoactivable compound -3H-diazofluorene.
The uncharged photoactivable probe 2-[3H]diazofluorene ([3H]DAF) was used to examine structural changes in the Torpedo californica nicotinic acetylcholine receptor (AChR) ion channel induced by agonists. Photoincorporation of [3H]DAF into the AChR consisted of the following two components: a nonspecific component consistent with incorporation into residues situated at the lipid-protein interfac...
متن کاملIdentification of amino acids of the torpedo nicotinic acetylcholine receptor contributing to the binding site for the noncompetitive antagonist [(3)H]tetracaine.
[(3)H]Tetracaine is a noncompetitive antagonist of the Torpedo nicotinic acetylcholine receptor (nAChR) that binds with high affinity in the absence of cholinergic agonist (K(eq) = 0.5 microM) and weakly (K(eq) = 30 microM) in the presence of agonist (i.e., to nAChR in the desensitized state). In the absence of agonist, irradiation at 302 nm of nAChR-rich membranes equilibrated with [(3)H]tetra...
متن کاملA conformational intermediate between the resting and desensitized states of the nicotinic acetylcholine receptor.
The structural changes induced in the nicotinic acetylcholine receptor by two noncompetitive channel blockers, proadifen and phencyclidine, have been studied by infrared difference spectroscopy and using the conformationally sensitive photoreactive noncompetitive antagonist 3-(trifluoromethyl)-3-m-([(125)I]iodophenyl)diazirine. Simultaneous binding of proadifen to both the ion channel pore and ...
متن کاملExamining the noncompetitive antagonist-binding site in the ion channel of the nicotinic acetylcholine receptor in the resting state.
3-Trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) has been shown to be a potent noncompetitive antagonist (NCA) of the nicotinic acetylcholine receptor (AChR). Amino acids that contribute to the binding site for [(125)I]TID in the ion channel have been identified in both the resting and desensitized state of the AChR (White, B.H., and Cohen, J.B. (1992) J. Biol. Chem. 267, 15770...
متن کاملPotentiation and inhibition of neuronal nicotinic receptors by atropine: competitive and noncompetitive effects.
Atropine, the classic muscarinic receptor antagonist, inhibits ion currents mediated by neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. At the holding potential of -80 mV, 1 microM atropine inhibits 1 mM acetylcholine-induced inward currents mediated by rat alpha2beta2, alpha2beta4, alpha3beta2, alpha3beta4, alpha4beta2, alpha4beta4, and alpha7 nicotinic receptor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 267 22 شماره
صفحات -
تاریخ انتشار 1992